On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization

نویسندگان

  • Xingguo Li
  • Tuo Zhao
  • Raman Arora
  • Han Liu
  • Mingyi Hong
چکیده

The cyclic block coordinate descent-type (CBCD-type) methods, which performs iterative updates for a few coordinates (a block) simultaneously throughout the procedure, have shown remarkable computational performance for solving strongly convex minimization problems. Typical applications include many popular statistical machine learning methods such as elastic-net regression, ridge penalized logistic regression, and sparse additive regression. Existing optimization literature has shown that for strongly convex minimization, the CBCD-type methods attain iteration complexity of O(p log(1/ )), where is a pre-specified accuracy of the objective value, and p is the number of blocks. However, such iteration complexity explicitly depends on p, and therefore is at least p times worse than the complexity O(log(1/ )) of gradient descent (GD) methods. To bridge this theoretical gap, we propose an improved convergence analysis for the CBCD-type methods. In particular, we first show that for a family of quadratic minimization problems, the iteration complexity O(log2(p) · log(1/ )) of the CBCDtype methods matches that of the GD methods in term of dependency on p, up to a log2p factor. Thus our complexity bounds are sharper than the existing bounds by at least a factor of p/ log2(p). We also provide a lower bound to confirm that our improved complexity bounds are tight (up to a log2p factor), under the assumption that the largest and smallest eigenvalues of the Hessian matrix do not scale with p. Finally, we generalize our analysis to other strongly convex minimization problems beyond quadratic ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization

The cyclic block coordinate descent-type (CBCD-type) methods have shown remarkable computational performance for solving strongly convex minimization problems. Typical applications includes many popular statistical machine learning methods such as elastic-net regression, ridge penalized logistic regression, and sparse additive regression. Existing optimization literature has shown that the CBCD...

متن کامل

On the Convergence of Block Coordinate Descent Type Methods

In this paper we study smooth convex programming problems where the decision variables vector is split into several blocks of variables. We analyze the block coordinate gradient projection method in which each iteration consists of performing a gradient projection step with respect to a certain block taken in a cyclic order. Global sublinear rate of convergence of this method is established and...

متن کامل

An Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...

متن کامل

An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...

متن کامل

An Accelerated Proximal Coordinate Gradient Method

We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016